Back to overview

Invited Lecture

Integrated Magnetics and Multiferroics for Compact and Power Efficient Sensing, Power, RF, Microwave and mm-Wave Electronics

Wednesday (07.06.2017)
20:20 - 21:00 Förde II + III
Part of:
12:20 Invited Lecture Similarities and differences between magnetic hysteresis and hysteresis in phase transformations 0 Richard James
13:00 Invited Lecture Discovery and Design of Multifunctional Materials using Combinatorial and High-Throughput Experimentation 1 Prof. Dr. Alfred Ludwig
15:10 Invited Lecture Tuning Mechanical Properties of Spider Cuticle by its Composition and by Structural Gradients 0 Dr. Yael Politi
15:50 Invited Lecture Surfaces and Gels for controlling Calcium Phosphate Deposition 0 Prof. Dr. Andreas Taubert
17:40 Invited Lecture Probing the Structure and Dynamic Behaviors of Ferroelectrics by Electron Microscopy with Atomic Resolution in Real Time 0 Prof. Xiaoqing Pan
18:20 Invited Lecture Magnetoelectric Composites for Energy Harvesting 1 Robert E. Hord, Jr. Professor Shashank Priya
19:40 Invited Lecture Declamping in Lead Magnesium Niobate – Lead Titanate Films 1 Prof. Susan Trolier-McKinstry
20:20 Invited Lecture Integrated Magnetics and Multiferroics for Compact and Power Efficient Sensing, Power, RF, Microwave and mm-Wave Electronics 0 Prof. Nian X. Sun
21:00 Invited Lecture From Maxwell’s displacement current to nanogenerator driven self-powered systems and blue energy 0 Prof. Zhong Lin Wang
21:40 Invited Lecture Magnetoelectric Composites: from Sensors to Sensor Systems 0 Prof. Dr.-Ing. Gerhard Schmidt
22:20 Invited Lecture Metal–insulator transition in vanadium oxides films and its applications 1 Dr. Keisuke Shibuya
00:20 Invited Lecture In operando photoemission spectroscopy of PMN-PT interfaces 0 Prof. Dr. Kai Rossnagel
08:30 Invited Lecture Titanium-Tantalum High Temperature Shape Memory Spring Actuators 1 Prof. Dr. Gunther Eggeler
09:10 Invited Lecture Vortex-antivortex topological structures in multiferroic tunnel junctions 1 Dr. Ana Sanchez
09:50 Invited Lecture Artificial Ferroic Systems 1 Prof. Laura Heyderman
17:40 Invited Lecture Biomimicry at the molecular level: Molecularly imprinted polymers as synthetic antibody mimics 0 Karsten Haupt
Session Chair
Topic Invited Lecture:
Belongs to:

The coexistence of electric polarization and magnetization in multiferroic materials provides great opportunities for realizing magnetoelectric coupling, including electric field control of magnetism, or vice versa, through a strain mediated magnetoelectric coupling in layered magnetic/ferroelectric multiferroic heterostructures [1-8]. Strong magnetoelectric coupling has been the enabling factor for different multiferroic devices, which however has been elusive, particularly at RF/microwave frequencies. In this presentation, I will cover the most recent progress on new integrated multiferroic devices for sensing, memory, RF and microwave electronics. Specifically, we will introduce magnetoelectric multiferroic materials, and their applications in different devices, including: (1) ultra-sensitive magnetometers based on RF NEMS magnetoelectric sensors with picoTesla sensitivity for DC and AC magnetic fields, which are the best room temperature nano-scale magnetometers and can be used for magnetoencephalography; (2) novel ultra-compact multiferroic antennas with f200µm × 0.8µm or l0/600 in size, -18dBi gain, ~0.2% bandwidth, self-biased operation and 1~2% voltage tunable operation frequency which can be used for embedded or wearable antennas; and (3) novel GHz magnetic and multiferroic inductors with a wide operation frequency range of 0.3~3GHz, and a high quality factor of close to 20, and a voltage tunable inductance of 50%~150%. At the same time, I will also demonstrate other voltage tunable multiferroic devices, including tunable isolating bandpass filters, tunable bandstop filters, tunable phase shifters, magnetoelectric random access memory, etc. These novel integrated multiferroic devices show great promise for applications in compact, lightweight and power efficient sensing, power, RF, microwave and mm-wave integrated electronics.

Reference: 1. N.X. Sun and G. Srinivasan, SPIN, 02, 1240004 (2012); 2. J. Lou, et al., Advanced Materials, 21, 4711 (2009); 3. . J. Lou, et al. Appl. Phys. Lett. 94, 112508 (2009); 4. M. Liu, et al. Advanced Functional Materials, 21, 2593 (2011); 5. T. Nan, et al. Scientific Reports, 3, 1985 (2013); 6. M. Liu, et al. Advanced Materials, 25, 1435 (2013); 7. M. Liu, et al. Advanced Functional Materials, 19, 1826 (2009); 8. Ziyao Zhou, et al. Nature Communications, 6, 6082 (2015). 



Prof. Nian X. Sun
Northeastern University Boston